
Post-quantum RSA

Daniel J. Bernstein1,2, Nadia Heninger3, Paul Lou3, and Luke Valenta3

1 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3 Computer and Information Science Department
University of Pennsylvania

Philadelphia, PA 19103, USA nadiah,plou,lukev@seas.upenn.edu

Abstract. This paper proposes RSA parameters for which (1) key gen-
eration, encryption, decryption, signing, and verification are feasible on
today’s computers while (2) all known attacks are infeasible, even as-
suming highly scalable quantum computers. As part of the performance
analysis, this paper introduces a new algorithm to generate a batch of
primes. As part of the attack analysis, this paper introduces a new quan-
tum factorization algorithm that is often much faster than Shor’s algo-
rithm and much faster than pre-quantum factorization algorithms. Initial
pqRSA implementation results are provided.

Keywords: post-quantum cryptography, RSA scalability, Shor’s algo-
rithm, ECM, Grover’s algorithm, Make RSA Great Again

1 Introduction

The 1994 publication of Shor’s algorithm prompted widespread claims that quan-
tum computers would kill cryptography, or at least public-key cryptography. For
example:

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was supported by the Commission of
the European Communities through the Horizon 2020 program under project number
645622 (PQCRYPTO) and project number 645421 (ECRYPT-CSA); by the Nether-
lands Organisation for Scientific Research (NWO) under grant 639.073.005; by the
U.S. National Institute of Standards and Technology under grant 60NANB10D263;
by the U.S. National Science Foundation under grants 1314919, 1408734, 1505799,
and 1513671; and by a gift from Cisco. P. Lou was supported by the Rachleff
Scholars program at the University of Pennsylvania. We are grateful to Cisco for
donating much of the hardware used for our experiments. “Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Sci-
ence Foundation” (or other funding agencies). Permanent ID of this document:
aaf273785255fe95feca9484e74c7833. Date: 2017.04.19.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

• [15]: “nobody knows exactly when quantum computing will become a reality,
but when and if it does, it will signal the end of traditional cryptography”.

• [37]: “if quantum computers exist one day, Shor’s results will make all current
known public-key cryptographic systems useless”.

• [29]: “It is already proven that quantum computers will allow to break public
key cryptography.”

• [20]: “When the first quantum factoring devices are built the security of
public-key crypstosystems [sic] will vanish.”

But these claims go far beyond the actual limits of Shor’s algorithm, and subse-
quent research into quantum cryptanalysis has done little to close the gap. The
conventional wisdom among researchers in post-quantum cryptography is that
quantum computers will kill RSA and ECC but will not kill hash-based cryp-
tography, code-based cryptography, lattice-based cryptography, or multivariate-
quadratic-equations cryptography.

Contents of this paper. Is it actually true that quantum computers will kill
RSA?

The question here is not whether quantum computers will be built, or will be
affordable for attackers. This paper assumes that astonishingly scalable quan-
tum computers will be built, making a qubit operation as inexpensive as a bit
operation. Under this assumption, Shor’s algorithm easily breaks RSA as used
on the Internet today. The question is whether RSA parameters can be adjusted
so that all known quantum attack algorithms are infeasible while encryption and
decryption remain feasible.

The conventional wisdom is that Shor’s algorithm factors an RSA public key
n almost as quickly as the legitimate RSA user can decrypt. Decryption uses
an exponentiation modulo n; Shor’s algorithm uses a quantum exponentiation
modulo n. There are some small overheads in Shor’s algorithm—for example,
the exponent is double-length—but these overheads create only a very small gap
between the cost of decryption and the cost of factorization. (Shor speculated
in [48, Section 3] that faster quantum algorithms for modular exponentiation
“could even make breaking RSA on a quantum computer asymptotically faster
than encrypting with RSA on a classical computer”; however, no such algorithms
have been found.)

The main point of this paper is that standard techniques for speeding up RSA,
when pushed to their extremes, create a much larger gap between the legitimate
user’s costs and the attacker’s costs. Specifically, for this paper’s version of RSA,
the attack cost is essentially quadratic in the usage cost.

These extremes require a careful analysis of quantum algorithms for inte-
ger factorization. As part of this security analysis, this paper introduces a new
quantum factorization algorithm, GEECM, that is often much faster than Shor’s
algorithm and all pre-quantum factorization algorithms. See Section 2. GEECM
turns out to be one of the main constraints upon parameter selection for post-
quantum RSA.

These extremes also require a careful analysis of algorithms for the basic RSA
operations. See Section 3. As part of this performance analysis, this paper intro-

Post-quantum RSA 3

duces a new algorithm to generate a large batch of independent uniform random
primes more efficiently than any known algorithm to generate such primes one
at a time.

Section 4 reports initial implementation results for RSA parameters large
enough to push all known quantum attacks above 2100 qubit operations. These
results include successful completion of the most expensive operation in post-
quantum RSA, namely generating a 1-terabyte public key.

Evaluation and comparison. Post-quantum RSA does not qualify as secure
under old-fashioned security definitions requiring asymptotic security against
polynomial-time adversaries. However, post-quantum RSA does appear to pro-
vide a reasonable level of concrete security.

Note that, for theoretical purposes, it is possible that (1) there are no public-
key encryption systems secure against polynomial-time quantum adversaries
but (2) there are public-key encryption systems secure against, e.g., essentially-
linear-time quantum adversaries. Post-quantum RSA is a candidate for the sec-
ond category.

One might think that the quadratic security of post-quantum RSA is no better
than the well-known quadratic security of Merkle’s original public-key system.
However, the well-known quadratic security is against pre-quantum attackers,
not against post-quantum attackers. The analyses by Brassard and Salvail in
[17], and by Brassard, Høyer, Kalach, Kaplan, Laplante, and Salvail in [16],
indicate that more complicated variants of Merkle’s original public-key system
can achieve exponents close to 1.5 against quantum computers, but this is far
below the exponent 2 achieved by post-quantum RSA. Concretely, (2100)1/1.5 is
approximately 100000 times larger than (2100)1/2.

Post-quantum RSA is not what one would call lightweight cryptography: the
cost of each new encryption or decryption is on the scale of $1 of computer time,
many orders of magnitude more expensive than pre-quantum RSA. However, if
this is the least expensive way to protect high-security information against being
recorded by an adversary today and decrypted by future quantum computers,
then it should be of interest to some users. One can draw an analogy here with
fully homomorphic encryption: something expensive might nevertheless be useful
if it is the least expensive way to achieve the user’s desired security goal.

Code-based cryptography and lattice-based cryptography have been studied
for many years and appear to provide secure encryption at far less expense than
post-quantum RSA. However, one can reasonably argue that triple encryption
with code-based cryptography, lattice-based cryptography, and post-quantum
RSA, for users who can afford it, provides a higher level of confidence than only
two of the mechanisms. Post-quantum RSA is also quite unusual in allowing post-
quantum encryption, signatures, and more advanced cryptographic functionality
such as blind signatures to be provided in a familiar way by a single unified
mechanism, a multiplicatively homomorphic trapdoor permutation.

Obviously the overall use case for post-quantum RSA relies heavily on the
faint possibility of dramatic improvements in attacks against a broad range of
alternatives. But the same criticism applies even more strongly to, e.g., the

4 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

proposals in [16]. More importantly, it is interesting to see that the conventional
wisdom is wrong, and that RSA has enough flexibility to survive the advent of
quantum computers—beaten, bruised, and limping, perhaps, but not dead.

Future work. There is a line of work suggesting big secrets as a protection
against limited-volume side-channel attacks and limited-volume exfiltration by
malware. As a recent example, Shamir is quoted in [7] as saying that he wants the
file containing the Coca-Cola secret “to be a terabyte, which cannot be [easily]
exfiltrated”. A terabyte takes only a few hours to transmit over a gigabit-per-
second link, but the basic idea of this line of work is that there are sometimes
limits on time and/or bandwidth in side channels and exfiltration channels, and
that these limits could stop the attacker from extracting the desired secrets. It
would be interesting to analyze the extent to which the secrets in post-quantum
RSA provide this type of protection. Beware, however, that a positive answer
could be undermined by other parts of the system that have not put the same
attention into expanding their data.

Our batch prime-generation algorithm suggests that, to help reduce energy
consumption and protect the environment, all users of RSA—including users of
traditional pre-quantum RSA—should delegate their key-generation computa-
tions to NIST or another trusted third party. This speed improvement would also
allow users to generate new RSA keys and erase old RSA keys more frequently,
limiting the damage of key theft.4 However, all trusted-third-party protocols
raise security questions (see, e.g., [19] and [24]), and there are significant costs
to all known techniques to securely distribute or delegate RSA computations.
The challenge here is to show that secure multi-user RSA key generation can be
carried out more efficiently than one-user-at-a-time RSA key generation.

Another natural direction of followup work is integration of post-quantum
RSA into standard Internet protocols such as TLS. This integration is concep-
tually straightforward but requires tackling many systems-level challenges, such
as various limitations on the RSA key sizes allowed in cryptographic libraries.

Acknowledgments. Thanks to Christian Grothoff for pointing out the appli-
cation to post-quantum blind signatures. Thanks to Joshua Fried for extensive
help with the compute cluster. Thanks to Daniel Genkin for pointing out the
possibility that post-quantum RSA naturally provides extra side-channel protec-
tion. Thanks to anonymous referees for their helpful comments, including asking
about [47] and [52].

4 If the goal is merely to protect past traffic against complete key theft (“forward se-
crecy”) then a user can obtain a speedup by generating many RSA keys in advance,
and erasing each key soon after it is first used. But erasing each key soon after it has
been generated is sometimes advertised as helping protect future traffic against lim-
ited types of compromise. Furthermore, batching across many users provides larger
speedups.

Post-quantum RSA 5

2 Post-quantum factorization

For every modern variant of RSA, including the variants considered in this paper,
the best attacks known are factorization algorithms. This section analyzes the
post-quantum complexity of integer factorization.

There have been some papers analyzing and improving the complexity of
Shor’s algorithm; see, e.g., [56]. However, the literature does not seem to contain
any broader study of quantum factorization algorithms. There seems to be an
implicit assumption that—once large enough quantum computers are available—
Shor’s algorithm supersedes the entire previous literature on integer factoriza-
tion, rendering all previous factorization algorithms obsolete, so studying the
complexity of factorization in a post-quantum world is tantamount to studying
the complexity of Shor’s algorithm.

The main point of this section is that post-quantum factorization is actually a
much richer subject. It should be obvious that previous algorithms are not always
superseded by Shor’s algorithm: as a trivial example, an integer divisible by 2 or
3 or 5 is much more efficiently detected by trial division than by Shor’s algorithm.
Perhaps less obvious is that there are quantum factorization algorithms that are,
for many integers, much faster than Shor’s algorithm and much faster than all
known pre-quantum algorithms. These algorithms turn out to be important for
post-quantum RSA, as discussed in Section 3.

Overview of pre-quantum integer factorization. There are two important
classes of factorization algorithms. The first class consists of algorithms that
are particularly fast at finding small primes: e.g., trial division, the rho method
[40], the p−1 method [39], the p+1 method [55], and the elliptic-curve method
(ECM) [35].

Each of these algorithms can be rephrased, without serious loss of efficiency,
as a ring algorithm that composes the ring operations 0, 1,+,−, · to produce
a large integer divisible by many small primes. By carrying out the same se-
quence of operations modulo a target integer n and computing the greatest
common divisor of the result with n, one sees whether n is divisible by any of the
same primes. For example, trial division up through y has essentially the same
performance as computing gcd{n, 2 · 3 · 5 · · · · y}; as another example, m steps
of the rho method compute gcd{n, (ρ2 − ρ1)(ρ4 − ρ2)(ρ6 − ρ3) · · · (ρ2m − ρm)}
with ρ1 = 1 and ρi+1 = ρ2i + 10.

The importance of ring operations is that carrying them out modulo n has the
effect of carrying them out modulo every prime p dividing n; i.e., Z/n → Z/p
is a ring morphism. To measure the speed and effectiveness of a ring algorithm
one sees how many operations are carried out by the algorithm and how many
primes p of various sizes divide the output. The size of n is almost irrelevant,
except that each ring operation modulo n costs (lg n)1+o(1) bit operations.

The second class consists of congruence-combining algorithms: e.g., the
continued-fraction method [33], the quadratic sieve [41], and the number-field
sieve (NFS) [34]. These algorithms multiply various congruences modulo n to ob-
tain a congruence of the form a2 ≡ b2 (mod n), and then hope that gcd{n, a− b}

6 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

is a nontrivial factor of n. These algorithms are not usefully viewed as ring al-
gorithms (the congruences modulo n are produced in a way that depends on n)
and are not particularly fast at finding small primes.

For large n the best congruence-combining algorithm appears to be NFS,

which (conjecturally) uses 2(lgn)
1/3+o(1)

bit operations. For comparison, ECM

uses 2(lg y)
1/2+o(1)

ring operations if ECM parameters are chosen to (conjec-
turally) find every prime p ≤ y. Evidently ECM uses fewer bit operations than

NFS to find sufficiently small primes p; the cutoff is 2(lgn)
2/3+o(1)

.

Shor’s algorithm. Shor begins with a circuit to compute the function x 7→
(x, 3x mod n), where x is an integer having about 2 lg n bits. Exponentiation
uses about 2 lg n multiplications modulo n, and the best multiplication methods
known use (lg n)1+o(1) bit operations, so exponentiation uses (lg n)2+o(1) bit
operations.

A standard conversion produces a quantum circuit that uses (lg n)2+o(1) qubit
operations to evaluate the same function on a quantum superposition of inputs.
With a small extra overhead (applying a quantum Fourier transform to the
output, sampling, et al.) Shor finds the period of this function, i.e., the order of
3 modulo n. This order is a divisor, typically a large divisor, of ϕ(n) = #(Z/n)∗,
and factoring n with this information is a standard exercise. In the rare case that
3 has small order modulo n, one can replace 3 with a random number—preferably
a small random number to save time in exponentiation.

There is a tremendous gap between the (lg n)2+o(1) qubit operations used

by Shor and the 2(lgn)
1/3+o(1)

bit operations used by NFS. Of course, for the
moment qubit operations seem impossibly expensive compared to bit operations,
but post-quantum cryptography looks ahead to a future where qubit operations
are affordable at a large scale. In this future it seems that congruence-combining
algorithms will be of little, if any, interest.

On the other hand, Shor’s algorithm is not competitive with ring algorithms
at finding small primes. Even if a qubit operation is as inexpensive as a bit
operation, Shor’s (lg n)2+o(1) qubit operations are as expensive as (lg n)1+o(1)

ring operations. ECM’s 2(lg y)
1/2+o(1)

ring operations are better than this for

sufficiently small primes. The cutoff is 2(lg lgn)2+o(1) .

Some wishful thinking. One might think that Shor’s algorithm can be tweaked
to take advantage of a small prime divisor p of n: the function x 7→ 3x mod p
has small period, and this period should be visible for x having only about 2 lg p
bits, rather than the 2 lg n bits used by Shor. This would save a factor of 2 even
in the most extreme case p ≈

√
n.

The difficulty is that one is not given the function x 7→ 3x mod p. The function
x 7→ 3x mod n has a small pseudo-period, in the sense that shifting the input
produces a related output, but one is also not given this relation.

If there were a fast way to detect pseudo-periods with respect to unknown
relations then one could drastically speed up Shor’s algorithm by finding the
pseudo-period p of the simpler function x 7→ x mod n. If x is limited to 2 lg p <
lg n bits then this function is simply the identity function x 7→ x, independent

Post-quantum RSA 7

of n, so there would have to be some other way for the algorithm to learn about
n. These obstacles seem insurmountable.

A quantum ring algorithm: GEECM. A more productive approach is to
take the best pre-quantum algorithms for finding small primes, and to accelerate
those algorithms using quantum techniques.

Under standard conjectures, ECM finds primes p ≤ y using 2(lg y)
1/2+o(1)

ring operations, as mentioned above; the rho method finds primes p ≤ y us-
ing y1/2+o(1) ring operations; and trial division (in its classic form) finds primes
p ≤ y using y1+o(1) ring operations. Evidently ECM supersedes the rho method
and trial division as y grows. The cutoff is generally stated (on the basis of more
detailed analyses of the o(1)) to be below 230, and the primes of interest in this
paper are much larger, so this paper focuses on ECM.

(There are occasional primes for which the p− 1 and p+ 1 methods are faster
than ECM, but the primes of interest in this paper are randomly generated. Most
of the comments in this section generalize to hyperelliptic curves, but genus-≥2-
hyperelliptic-curve methods have always been slightly slower than ECM.)

The state-of-the-art variant of ECM is EECM (ECM using Edwards curves),
introduced by Bernstein, Birkner, Lange, and Peters in [12]. EECM chooses
an Edwards curve x2 + y2 = 1 + dx2y2 over Q, or more generally a twisted
Edwards curve, with a known non-torsion point P ; EECM also chooses a large
integer s and uses the Edwards addition law to compute the sth multiple of P
on the curve, and in particular the x-coordinate x(sP), represented as a fraction
of integers. The output of the ring algorithm is the numerator of this fraction.
Overall the computation takes (7 + o(1)) lg s multiplications (more than half of
which are squarings) and a comparable number of additions and subtractions.
For optimized curve choices and further details see [12], [11], [14], [5], and [22].

If s is chosen as lcm{1, 2, . . . , z} then lg s ≈ 1.4z so this curve computa-
tion uses about 10z multiplications. If z ∈ Lc+o(1) as y → ∞, where L =
exp
√

log y log log y and c is a positive real constant, then standard conjectures
imply that each prime p ≤ y is found by this curve with probability 1/L1/2c+o(1).
Standard conjectures also imply that curves are almost independent, so by try-
ing L1/2c+o(1) curves one finds each prime p with high probability. The total cost
of trying all these curves is Lc+1/2c+o(1) ring operations. The expression c+1/2c

takes its minimum value 1 for c = 1/
√

2; the total cost is then L
√
2+o(1) ring

operations.
This paper introduces GEECM (Grover plus EECM), which uses quantum

computers as follows to accelerate the same EECM computation. Recall that
Grover’s method accelerates searching for roots of functions: if the inputs to a
function f are roots of f with probability 1/R, then classical searching performs
(on average) R evaluations of f , while Grover’s method performs about

√
R

quantum evaluations of f . Consider, in particular, the function f whose input is
an EECM curve choice, and whose output is 0 exactly when the EECM result
for that curve choice has a nontrivial factor in common with n. EECM finds a
root of f by classical searching; GEECM finds a root of f by Grover’s method. If
s and z are chosen as above then the inputs to f are roots of f with probability

8 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

1/L1/2c+o(1), so GEECM uses just L1/4c+o(1) quantum evaluations of f , for a
total of Lc+1/4c+o(1) quantum ring operations. The expression c+ 1/4c takes its
minimum value 1 for c = 1/2; the total cost is then just L1+o(1) ring operations.

To summarize, GEECM reduces the number of ring operations from L
√
2+o(1)

to L1+o(1), where L = exp
√

log y log log y. For the same number of operations,
GEECM increases log y by a factor 2 + o(1), almost doubling the number of bits
of primes that can be found.

3 RSA scalability

Obviously a post-quantum RSA public key n will need to be quite large to
resist the attacks described in Section 2. This section analyzes the scalability of
the best algorithms available for RSA key generation, encryption, decryption,
signature generation, and signature verification.

Small exponents. The fundamental RSA public-key operation is computing
an eth power modulo n. This modular exponentiation uses approximately lg e
squarings modulo n, and, thanks to standard windowing techniques, o(lg e) extra
multiplications modulo n.

In the original RSA paper [43], e was a random number with as many bits
as n. Rabin in [42] suggested instead using a small constant e, and said that
e = 2 is “several hundred times faster.” Rabin’s speedup factor grows as Θ(lg n),
making it particularly important for the large sizes of n considered in this paper.

The slower but simpler choice e = 3 was deployed in a variety of real-world
applications. The much slower alternative e = 65537 subsequently became popu-
lar as a means of compensating for poor choices of RSA message-randomization
mechanisms, but with proper randomization no attacks against e = 3 are known
that are faster than factorization.

For simplicity this paper also focuses on e = 3. Computing an eth power
modulo n then takes one squaring modulo n and one general multiplication
modulo n. Each of these steps takes just (lg n)1+o(1) bit operations using stan-
dard fast-multiplication techniques; see below for further discussion. Notice that
(lg n)1+o(1) is asymptotically far below the (lg n)2+o(1) cost of Shor’s algorithm.

Many primes. The fundamental RSA secret-key operation is computing an
eth root modulo n. For e = 3 one chooses n as a product of distinct primes
congruent to 2 modulo 3; then the inverse of x 7→ x3 mod n is x 7→ xd mod n,
where d = (1 + 2

∏
p|n(p − 1))/3. Unfortunately, d is not a small exponent—it

has approximately lg n bits.
A classic speedup in the computation of xd mod n is to compute xd mod p and

xd mod q, where p and q are the prime divisors of n, and to combine them into
xd mod n by a suitably explicit form of the Chinese remainder theorem. Fermat’s
identity xp mod p = x mod p further implies that xd mod p = xd mod (p−1) mod p
(since d mod (p − 1) ≥ 1) and similarly xd mod q = xd mod (q−1) mod q. The
exponents d mod (p−1) and d mod (q−1) have only half as many bits as n; the

Post-quantum RSA 9

exponentiation xd mod n is thus replaced by two exponentiations with half-size
exponents and half-size moduli.

If n is a product of more primes, say k ≥ 3 primes, then the same speedup
becomes even more effective, using k exponentiations with (1/k)-size exponents
and (1/k)-size moduli. Prime generation also becomes much easier since the
primes are smaller. Of course, if primes are too small then the attacker can find
them using the ring algorithms discussed in the previous section—specifically
EECM before quantum computers, and GEECM after quantum computers.

What matters for this paper is how multi-prime RSA scales to much larger
moduli n. Before quantum computers the top threats are EECM and NFS, and
balancing these threats implies that each prime p has (lg n)2/3+o(1) bits (see
above), i.e., that k ∈ (lg n)1/3+o(1). After quantum computers the top threats
are GEECM and Shor’s algorithm, and balancing these threats implies that
each prime p has just (lg lg n)2+o(1) bits, i.e., that k ∈ (lg n)/(lg lgn)2+o(1). RSA
key generation, decryption, and signature generation then take (lg n)1+o(1) bit
operations; see below for further discussion.

Key generation. To recap: A k-prime exponent-3 RSA public key n is a product
of k distinct primes p congruent to 2 modulo 3. In particular, a post-quantum
RSA public key n is a product of k distinct primes p congruent to 2 modulo 3,
where each prime p has (lg lg n)2+o(1) bits.

Standard prime-generation techniques use (lg p)3+o(1) bit operations. See, e.g.,
[6, Section 3] and [38, Section 4.5]. The point is that one must try about log p
random numbers before finding a prime, and checking primality has similar cost
to a single exponentiation modulo p.

A standard speedup is to check whether p is divisible by any primes up through
some limit, say y. The chance of a random integer surviving this divisibility test
is approximately 1/ log y, reducing the original pool of log p random numbers to
(log p)/ log y random numbers and saving an overall factor of log y if the trial
division is not a bottleneck. The conventional view is that keeping the cost of
trial division under control requires y to be chosen as a polynomial in lg p, saving
a factor of only Θ(lg lg p) and thus still requiring (lg p)3+o(1) bit operations.

A nonstandard speedup is to replace trial division (or sieving) by batch trial
division [8] or batch smoothness detection [9]. The algorithm of [9] reads a
finite sequence S of positive integers and a finite set P of primes, and finds
“the largest P -smooth divisor of each integer in S” using just b(lg b)2+o(1) bit
operations, where b is the total number of bits in P and S. In particular, if P
is the set of primes up through y, and S is a sequence of Θ(y/ lg p) integers
each having Θ(lg p) bits, then b is Θ(y) and this algorithm uses just y(lg y)2+o(1)

bit operations, i.e., (lg p)(lg y)2+o(1) bit operations for each element of S. Larger
sequences S can trivially be split into sequences of size Θ(y/ lg p), producing the
same performance per element of S.

To do even better, assume that the original size of S is at least 22
α

, and
apply batch smoothness detection successively for y = 22

0

, y = 22
1

, y = 22
2

,
and so on through y = 22

α

. Each step weeds out about half of the remaining
elements of S as composites; the next step costs about four times as much per

10 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

element but is applied to only half as many elements. The total cost is just
(lg p)(2α)1+o(1) bit operations for each of the original elements of S. Each of
the original elements has probability about 1/2α of surviving this process and
incurring an exponentiation, which costs (lg p)2+o(1) bit operations. Choosing
2α ∈ (lg p)0.5+o(1) balances these costs as (lg p)1.5+o(1) for each of the original
elements of S, i.e., (lg p)2.5+o(1) for each prime generated.

In the context of post-quantum RSA the assumption about the original size
of S is satisfied: one has to generate (lg n)1+o(1) primes, so the original size of
S is (lg n)1+o(1), which is at least 22

α

for 2α ∈ (1 + o(1)) lg lg n; this choice of
α satisfies 2α ∈ (lg p)0.5+o(1) since lg p ∈ (lg lgn)2+o(1). The primes are also
balanced, in the sense that (lg n)/k ∈ (lg p)1+o(1) for each p, so generating k
primes in this way uses k(lg p)2.5+o(1) = (lg n)(lg p)1.5+o(1) = (lg n)(lg lg n)3+o(1)

bit operations.
Computing n by multiplying these primes uses only (lg n)(lg lg n)2+o(1) bit

operations using standard fast-arithmetic techniques; see, e.g., [10, Section 12].
At this level of detail it does not matter whether one uses the classic Schönhage–
Strassen multiplication algorithm [46], Fürer’s multiplication algorithm [21], or
the Harvey–van der Hoeven–Lecerf multiplication algorithm [27].

The total number of bit operations for key generation is essentially linear in
lg n. For comparison, the usual picture is that prime generation is vastly more
expensive than any of the other steps in RSA.

One can try to further accelerate key generation using Takagi’s idea [52] of
choosing n as pk−1q. We point out two reasons that this is worrisome. The first
reason is lattice attacks [13]. The second reason is that any nth power modulo
n has small order, namely some divisor of (p− 1)(q − 1); Shor’s algorithm finds
the order at relatively high speed once the nth power is computed.

Encryption and decryption. There are many different RSA encryption mech-
anisms in the literature. The oldest mechanisms use RSA to directly encrypt a
user’s message; this requires careful padding and scrambling of the message.
Newer mechanisms generate a secret key (for example, an AES key), use the
secret key to encrypt and authenticate the user’s message, and use RSA to en-
crypt the secret key; this allows simpler padding, since the secret key is already
randomized. The newest mechanisms such as Shoup’s “RSA-KEM” [51] simply
use RSA to encrypt lg n bits of random data, hash the random data to obtain
a secret key, and use the secret key to encrypt and authenticate the user’s mes-
sage; this does not require any padding. For simplicity this paper takes the last
approach.

Generating large amounts of truly random data is expensive. Fortunately,
truly random data can be simulated by pseudorandom data produced by a
stream cipher from a much smaller key. (Even better, slight deficiencies in the
randomness of the cipher key do not compromise security.) The literature con-
tains several scalable ciphers that produce a Θ(b)-bit block of output from a
Θ(b)-bit key, with a conjectured 2b security level, using b2+o(1) bit operations
(and even fewer for some ciphers), i.e., b1+o(1) bit operations for each output bit.
In the context of post-quantum RSA one has b ∈ Θ(lg lg n) so generating lg n

Post-quantum RSA 11

pseudorandom bits costs (lg n)(lg lg n)1+o(1) bit operations. The same ciphers
can also be converted into hash functions with only a constant-factor loss in
efficiency, so hashing the bits also costs (lg n)(lg lg n)1+o(1) bit operations.

Multiplication also takes (lgn)(lg lg n)1+o(1) bit operations. Squaring, reduc-
tion modulo n, multiplication, and another reduction modulo n together take
(lg n)(lg lg n)1+o(1) bit operations. The overall cost of RSA encryption is therefore
(lg n)(lg lg n)1+o(1) bit operations plus the cost of encrypting and authenticating
the user’s message under the resulting secret key.

Decryption is more complicated but not much slower; it works as follows.
First reduce the ciphertext modulo all of the prime divisors of n. This takes
(lg n)(lg lg n)2+o(1) bit operations using a remainder tree or a scaled remainder
tree; see, e.g., [10, Section 18]. Then compute a cube root modulo each prime.
A cube root modulo p takes (lg p)2+o(1) bit operations, so all of the cube roots
together take (lg n)(lg lg n)2+o(1) bit operations. Then reconstruct the cube root
modulo n. This takes (lg n)(lg lg n)2+o(1) bit operations using fast interpolation
techniques; see, e.g., [10, Section 23]. Finally hash the cube root. The overall
cost of RSA decryption is (lg n)(lg lg n)2+o(1) bit operations, plus the cost of
verifying and decrypting the user’s message under the resulting secret key.

Shamir in [47] proposed decrypting modulo just one prime, and choosing
plaintexts to be smaller than primes. However, this requires exponents to be
much larger for security, and in the context of post-quantum RSA this slows
down encryption by vastly more than it speeds up decryption. A more interest-
ing variant, which we do not explore further, is to use a significant fraction of
the primes to decrypt a plaintext having (lg n)/(lg lg n)0.5+o(1) bits; this should
reduce the total cost of encryption and decryption to (lg n)(lg lg n)1.5+o(1) bit
operations with a properly chosen exponent.

Signature generation and verification. Standard padding schemes for RSA
signatures involve the same operations discussed above, such as hashing to a
short string and using a stream cipher to expand the short string to a long
string.

The final speeds are, unsurprisingly, (lg n)(lg lg n)2+o(1) bit operations to gen-
erate a signature and (lg n)(lg lg n)1+o(1) bit operations to verify a signature,
plus the cost of hashing the user’s message.

4 Concrete parameters and initial implementation

Summarizing what we’ve learned so far: Shor’s algorithm takes (lg n)2+o(1) qubit
operations to factor n. If the prime divisors of n are too small then GEECM
becomes a larger threat than Shor’s algorithm; protecting against GEECM re-
quires each prime to have (lg lg n)2+o(1) bits. Section 3 showed that, under this
constraint, all of the RSA operations can be carried out using (lg n)(lg lg n)O(1)

bit operations; the O(1) is 3 + o(1) for key generation, 2 + o(1) for decryption
and signature generation, and 1 + o(1) for encryption and signature verification.

12 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

These asymptotics do not imply anything about any particular size of n. This
section looks at performance in more detail, and in particular reports successful
generation of a 1-terabyte post-quantum RSA key built from 4096-bit primes.

Prime sizes and key sizes. Before looking at performance, we explain why
these sizes (1-terabyte key, 4096-bit primes) provide ample security.

A 1-terabyte key n has 243 bits, so Shor’s algorithm uses 244 multiplications
modulo n. We have not found literature analyzing the cost of circuits for opti-
mized FFT-based multiplication at this scale, so we extrapolate as follows.

The recent speed records from Harvey–van der Hoeven–Lecerf [28] for multi-
plication of degree-221 polynomials over a particularly favorable finite field, F260 ,
use 640 milliseconds on a 3.4GHz CPU core. More than half of the cycles are
performing 128-bit vector xor, and more than 10% of the cycles are performing
64×64-bit polynomial multiplications, according to [28, Section 3.3], for a total
of approximately 240 bit operations to multiply 227-bit inputs.

Imagine that the same 213 ratio scales directly from 227-bit inputs to 243-bit in-
puts; that integer multiplication uses as few bit operations as binary-polynomial
multiplication; that reduction modulo n does not cost anything; and that there
are no overheads for switching from bit operations to reversible qubit operations
inside a realistic quantum-computer architecture. (For comparison, the ratio in
[56] is more than 220 for 220-bit inputs.) Each multiplication modulo n inside
Shor’s algorithm then uses 256 qubit operations, and overall Shor’s algorithm
consumes an astonishing 2100 qubit operations.

We caution the reader that this is only a preliminary estimate. A thorough
analysis would have to account for several overheads mentioned above; for the
number of Shor iterations required; for known techniques to reduce the number
of iterations; for techniques to use slightly fewer multiplications per iteration;
and for the latest improvements in integer-multiplication algorithms.

As for prime sizes: Standard pre-quantum cost analyses conclude that 4096-
bit RSA keys provide roughly 2140 security against all available algorithms. ECM
is well known to be inferior to NFS at such sizes; evidently it uses even more
than 2140 bit operations to find 2048-bit primes. ECM would be even slower
against a much larger modulus, simply because arithmetic is slower. However,
the speedup from ECM to GEECM reduces the post-quantum security level of
2048-bit primes. Rather than engaging in a detailed analysis of this loss, we move
up to 4096-bit primes, obviously putting GEECM far out of reach.

Implementation. We now discuss our implementation of post-quantum RSA.
Our main result is successful generation of a 1-terabyte exponent-3 RSA key
consisting of 4096-bit primes. We also have preliminary results for encryption
and decryption, although so far only for smaller sizes.

Our computations were performed on a heterogeneous cluster. We give a de-
scription of the machines in Appendix A. The memory-intensive portions of our
computations were carried out a single machine running Ubuntu with 24 cores
at 3.40 GHz (4 Intel Xeon E7-8893 v2 processors), 3 terabytes of DRAM, and
4.9 terabytes of swap memory built from enterprise SSDs. We will refer to this
machine as lattice0 below. We measured memory consumption and overall

Post-quantum RSA 13

Encryption Decryption

Key Size Bytes Rem. tree Cube root CRT tree

1MB 220 0.3 0.2 4.8 25.0
10MB 223.3 5 6 18 262
100MB 226.6 77 261 177 2851
1GB 230 654 812 1765 33586
4GB 232 3123 2318 8931 101309
8GB 233 6689 7214 17266 212215
16GB 234 18183 20420 34376 476798
32GB 235 29464 62729 62567 N/A
128GB 237 150975 N/A N/A N/A
256GB 238 362015 N/A N/A N/A

Table 4.1. Encryption and decryption times—We measure wall clock time in
seconds on lattice0 for encryption and the three stages of decryption: reducing the
ciphertext modulo each prime factor, computing a cube root modulo each prime, and
reconstructing the plaintext modulo the product.

runtime for bignum multiplications using GNU’s Multiple Precision (GMP) Li-
brary [26]. We encountered a number of software limits and bugs, which we
detail in Appendix A.

Prime generation. Generating a 1-terabyte exponent-3 RSA key requires 231

4096-bit primes that are congruent to 2 mod 3. To efficiently generate such a
large number of primes, our implementation first applies the batched smoothness
detection technique discussed in Section 3 to an input collection of random 4096-
bit numbers. We then use the Fermat congruence primality test to produce our
final set of primes. While we do not prove that each number in the final output
is prime, this test is sufficient to guarantee with high confidence that all of the
4096-bit numbers in the final output are prime. See [31] for quantitative upper
bounds on the error probability.

We found that first filtering for random numbers congruent to 5 mod 6, and
then applying batch sieving with the successive bounds y = 210 and y = 220

worked well in practice. Our heterogeneous cluster was able to generate primes
at a rate of 750–1585 primes per core-hour. Generating all 231 primes took ap-
proximately 1,975,000 core-hours. In calendar time, prime generation completed
in four months running on spare compute capacity of a 1,400-core cluster.

Product tree. After we successfully generated 231 4096-bit primes, we used a
product tree to compute the 1-terabyte public RSA key. We distributed indi-
vidual multiplications across our heterogeneous cluster to reduce the wall-clock
time. We first multiplied batches of 8 million primes and wrote their products
out to disk. Each subsequent single-threaded multiplication job read two in-
tegers from disk and wrote their product back to disk. Running times varied
due to different CPU types and non-pqRSA related jobs sharing cache space.
Once the integers reached 256GB in size, we finished computing the product

14 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

on lattice0. The aggregate wall-clock time used by individual multiply jobs
was about 1,239,626 seconds, and the elapsed time for the terabyte key genera-
tion was about four days. The final multiplication of two 512 GB integers took
176,223 seconds in wall-clock time, using 3.166TB of RAM and 2.5 TB of swap
storage.

Encryption. We implemented RSA encryption using RSA-KEM, as described
in Section 3. With the exponent e = 3, we found that a simple square-and-
reduce using GMP’s mpz mult and mpz mod was almost twice as fast as using the
modular exponentiation function mpz powm. Each operation was single-threaded.
We were able to complete RSA encryption for modulus sizes up to 2 terabits, as
shown in Table 4.1. For the 2Tb (256GB) encryption, the longest multiplication
took 13 hours, modular reduction took 40 hours, and in total encryption took a
little over 100 hours.

Decryption. We implemented RSA decryption as described in Section 3. Ta-
ble 4.1 gives wall-clock timings for the three computational steps in decryption,
each parallelized across 48 threads. Precomputing the entire product and re-
mainder tree for a terabyte-sized key and storing it to disk would have taken
32TB of disk space, so instead we recomputed portions of the trees on the fly.
The reported timings for the remainder tree step in Table 4.1 include the time it
takes to recompute both the product and remainder tree with a batch size of 8
million primes. Using a batch size of 8 million primes was roughly twice as fast
as using a batch size of 2 million primes. We obtained experimental results for
decryption of messages for key sizes of up to 16GB.

References

[1] — (no editor), Second international conference on quantum, nano, and micro
technologies, ICQNM 2008, February 10–15, 2008, Sainte Luce, Martinique,
French Caribbean, IEEE Computer Society, 2008. See [17].

[2] — (no editor), kernel BUG at mm/huge memory.c:1798!
(2012). URL: http://linux-kernel.2935.n7.nabble.com/

kernel-BUG-at-mm-huge-memory-c-1798-td574029.html. Citations in this
document: §A.

[3] — (no editor), Proceedings of the 23rd USENIX security symposium, August 20–
22, 2014, San Diego, CA, USA, USENIX, 2014. See [19].

[4] Michel Abdalla, Paulo S. L. M. Barreto (editors), Progress in cryptology—
LATINCRYPT 2010, first international conference on cryptology and informa-
tion security in Latin America, Puebla, Mexico, August 8–11, 2010, proceedings,
Lecture Notes in Computer Science, 6212, Springer, 2010. See [11].

[5] Razvan Barbulescu, Joppe W. Bos, Cyril Bouvier, Thorsten Kleinjung, Peter L.
Montgomery, Finding ECM-friendly curves through a study of Galois properties
(2013), 63–86, ANTS-X: proceedings of the tenth Algorithmic Number Theory
Symposium, 2013. URL: http://msp.org/obs/2013/1/p04.xhtml. Citations in
this document: §2.

http://linux-kernel.2935.n7.nabble.com/kernel-BUG-at-mm-huge-memory-c-1798-td574029.html
http://linux-kernel.2935.n7.nabble.com/kernel-BUG-at-mm-huge-memory-c-1798-td574029.html
http://msp.org/obs/2013/1/p04.xhtml

Post-quantum RSA 15

[6] Pierre Beauchemin, Gilles Brassard, Claude Crépeau, Claude Goutier, Carl
Pomerance, The generation of random numbers that are probably prime, Jour-
nal of Cryptology 1 (1988), 53–64. URL: https://math.dartmouth.edu/~carlp/
probprime.pdf. Citations in this document: §3.

[7] Mihir Bellare, Daniel Kane, Phillip Rogaway, Big-Key symmetric encryption:
resisting key exfiltration, in [44] (2016), 373–402. URL: https://eprint.iacr.
org/2016/541.pdf. Citations in this document: §1.

[8] Daniel J. Bernstein, How to find small factors of integers (2002). URL: https://
cr.yp.to/papers.html#sf. Citations in this document: §3.

[9] Daniel J. Bernstein, How to find smooth parts of integers (2004). URL: https://
cr.yp.to/papers.html#smoothparts. Citations in this document: §3, §3.

[10] Daniel J. Bernstein, Fast multiplication and its applications, in [18] (2008), 325–
384. URL: https://cr.yp.to/papers.html#multapps. Citations in this docu-
ment: §3, §3, §3.

[11] Daniel J. Bernstein, Peter Birkner, Tanja Lange, Starfish on strike, in Latincrypt
2010 [4] (2010), 61–80. URL: https://eprint.iacr.org/2010/367. Citations in
this document: §2.

[12] Daniel J. Bernstein, Peter Birkner, Tanja Lange, Christiane Peters, ECM using
Edwards curves (2008). URL: https://eprint.iacr.org/2008/016. Citations in
this document: §2, §2.

[13] Dan Boneh, Glenn Durfee, Nick Howgrave-Graham, Factoring N = prq for
large r, in [54] (1999), 326–337. URL: http://crypto.stanford.edu/~dabo/

abstracts/prq.html. Citations in this document: §3.
[14] Joppe W. Bos, Thorsten Kleinjung, ECM at work, in Asiacrypt 2012 [53] (2012),

467–484. URL: https://eprint.iacr.org/2012/089. Citations in this document:
§2.

[15] Sergai Boukhonine, Cryptography: a security tool of the informa-
tion age (1998). URL: https://pdfs.semanticscholar.org/3932/

8253d692f791b37c425e776f6cee0b8c3e56.pdf. Citations in this document:
§1.

[16] Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan, Sophie Laplante,
Louis Salvail, Merkle puzzles in a quantum world, in Crypto 2011 [45] (2011),
391–410. URL: https://arxiv.org/abs/1108.2316. Citations in this document:
§1, §1.

[17] Gilles Brassard, Louis Salvail, Quantum Merkle puzzles, in ICQNM 2008 [1]
(2008), 76–79. Citations in this document: §1.

[18] Joe P. Buhler, Peter Stevenhagen (editors), Surveys in algorithmic number theory,
Mathematical Sciences Research Institute Publications, 44, Cambridge University
Press, New York, 2008. See [10].

[19] Stephen Checkoway, Matthew Fredrikson, Ruben Niederhagen, Adam Ev-
erspaugh, Matthew Green, Tanja Lange, Thomas Ristenpart, Daniel J. Bern-
stein, Jake Maskiewicz, Hovav Shacham, On the practical exploitability of Dual
EC in TLS implementations, in USENIX Security 2014 [3] (2014). URL: https://
projectbullrun.org/dual-ec/index.html. Citations in this document: §1.

[20] Artur Ekert, Quantum cryptoanalysis—introduction (2010). URL: http://www.
qi.damtp.cam.ac.uk/node/69. Citations in this document: §1.

[21] Martin Fürer, Faster integer multiplication, in [30] (2007), 57–66. URL: https://
www.cse.psu.edu/~furer/. Citations in this document: §3.

[22] Alexandre Gélin, Thorsten Kleinjung, Arjen K. Lenstra, Parametrizations for
families of ECM-friendly curves (2016). URL: https://eprint.iacr.org/2016/
1092. Citations in this document: §2.

https://math.dartmouth.edu/~carlp/probprime.pdf
https://math.dartmouth.edu/~carlp/probprime.pdf
https://eprint.iacr.org/2016/541.pdf
https://eprint.iacr.org/2016/541.pdf
https://cr.yp.to/papers.html#sf
https://cr.yp.to/papers.html#sf
https://cr.yp.to/papers.html#smoothparts
https://cr.yp.to/papers.html#smoothparts
https://cr.yp.to/papers.html#multapps
https://eprint.iacr.org/2010/367
https://eprint.iacr.org/2008/016
http://crypto.stanford.edu/~dabo/abstracts/prq.html
http://crypto.stanford.edu/~dabo/abstracts/prq.html
https://eprint.iacr.org/2012/089
https://pdfs.semanticscholar.org/3932/8253d692f791b37c425e776f6cee0b8c3e56.pdf
https://pdfs.semanticscholar.org/3932/8253d692f791b37c425e776f6cee0b8c3e56.pdf
https://arxiv.org/abs/1108.2316
https://projectbullrun.org/dual-ec/index.html
https://projectbullrun.org/dual-ec/index.html
http://www.qi.damtp.cam.ac.uk/node/69
http://www.qi.damtp.cam.ac.uk/node/69
https://www.cse.psu.edu/~furer/
https://www.cse.psu.edu/~furer/
https://eprint.iacr.org/2016/1092
https://eprint.iacr.org/2016/1092

16 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

[23] Shafi Goldwasser (editor), 35th annual IEEE symposium on the foundations of
computer science. Proceedings of the IEEE symposium held in Santa Fe, NM,
November 20–22, 1994, IEEE, 1994. ISBN 0-8186-6580-7. MR 98h:68008. See
[48].

[24] Dan Goodin, Symantec employees fired for issuing rogue HTTPS certifi-
cate for Google (2015). URL: https://arstechnica.com/security/2015/09/

symantec-employees-fired-for-issuing-rogue-https-certificate-for-google/.
Citations in this document: §1.

[25] Torbjörn Granlund, gmp integer size limitation (2012). URL: https://gmplib.
org/list-archives/gmp-discuss/2012-April/005020.html. Citations in this
document: §A.

[26] Torbjörn Granlund, the GMP development team, GNU MP: The GNU Multiple
Precision Arithmetic Library (2015). URL: https://gmplib.org/. Citations in
this document: §4.

[27] David Harvey, Joris van der Hoeven, Grégoire Lecerf, Even faster integer mul-
tiplication, Journal of Complexity 36 (2016), 1–30. URL: https://arxiv.org/
abs/1407.3360. Citations in this document: §3.

[28] David Harvey, Joris van der Hoeven, Grégoire Lecerf, Fast polynomial multipli-
cation over F260 , proceedings of ISSAC 2016, to appear (2016). URL: https://
hal.archives-ouvertes.fr/hal-01265278. Citations in this document: §4, §4.

[29] id Quantique, Future-proof data confidentiality with quantum cryptogra-
phy (2005). URL: https://classic-web.archive.org/web/20070728200504/

http://www.idquantique.com/products/files/vectis-future.pdf. Citations
in this document: §1.

[30] David S. Johnson, Uriel Feige (editors), Proceedings of the 39th annual ACM
symposium on theory of computing, San Diego, California, USA, June 11–13,
2007, Association for Computing Machinery, New York, 2007. ISBN 978-1-59593-
631-8. See [21].

[31] Su Hee Kim, Carl Pomerance, The probability that a random probable prime is
composite, Mathematics of Computation 53 (1989), 721–741. URL: https://

math.dartmouth.edu/~carlp/PDF/paper72.pdf. Citations in this document: §4.
[32] Hugo Krawczyk (editor), Advances in cryptology—CRYPTO ’98, 18th annual

international cryptology conference, Santa Barbara, California, USA, August 23–
27, 1998, proceedings, Lecture Notes in Computer Science, 1462, Springer, 1998.
ISBN 3-540-64892-5. MR 99i:94059. See [52].

[33] Derrick H. Lehmer, R. E. Powers, On factoring large numbers, Bulletin of the
American Mathematical Society 37 (1931), 770–776. Citations in this document:
§2.

[34] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the
number field sieve, Lecture Notes in Mathematics, 1554, Springer-Verlag, Berlin,
1993. ISBN 3-540-57013-6. MR 96m:11116. Citations in this document: §2.

[35] Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Math-
ematics 126 (1987), 649–673. MR 89g:11125. Citations in this document: §2.

[36] Hendrik W. Lenstra, Jr., R. Tijdeman (editors), Computational methods in num-
ber theory I, Mathematical Centre Tracts, 154, Mathematisch Centrum, Amster-
dam, 1982. ISBN 90-6196-248-X. MR 84c:10002. See [41].

[37] Franck Leprévost, The end of public key cryptography or does God play dices?,
PricewaterhouseCoopers Cryptographic Centre of Excellence Quaterly Journal
(1999). URL: http://tinyurl.com/jdkkxc3. Citations in this document: §1.

https://arstechnica.com/security/2015/09/symantec-employees-fired-for-issuing-rogue-https-certificate-for-google/
https://arstechnica.com/security/2015/09/symantec-employees-fired-for-issuing-rogue-https-certificate-for-google/
https://gmplib.org/list-archives/gmp-discuss/2012-April/005020.html
https://gmplib.org/list-archives/gmp-discuss/2012-April/005020.html
https://gmplib.org/
https://arxiv.org/abs/1407.3360
https://arxiv.org/abs/1407.3360
https://hal.archives-ouvertes.fr/hal-01265278
https://hal.archives-ouvertes.fr/hal-01265278
https://classic-web.archive.org/web/20070728200504/http://www.idquantique.com/products/files/vectis-future.pdf
https://classic-web.archive.org/web/20070728200504/http://www.idquantique.com/products/files/vectis-future.pdf
https://math.dartmouth.edu/~carlp/PDF/paper72.pdf
https://math.dartmouth.edu/~carlp/PDF/paper72.pdf
http://tinyurl.com/jdkkxc3

Post-quantum RSA 17

[38] Ueli M. Maurer, Fast generation of prime numbers and secure public-key cryp-
tographic parameters, Journal of Cryptology 8 (1995), 123–155. URL: http://
link.springer.com/article/10.1007/BF00202269. Citations in this document:
§3.

[39] John M. Pollard, Theorems on factorization and primality testing, Proceedings of
the Cambridge Philosophical Society 76 (1974), 521–528. MR 50 #6992. Citations
in this document: §2.

[40] John M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331–
334. MR 52 #13611. Citations in this document: §2.

[41] Carl Pomerance, Analysis and comparison of some integer factoring algorithms,
in [36] (1982), 89–139. MR 84i:10005. Citations in this document: §2.

[42] Michael O. Rabin, Digitalized signatures and public-key functions as intractable
as factorization, Technical Report 212, MIT Laboratory for Computer Science,
1979. URL: https://archive.org/details/bitsavers_mitlcstrMI_457188. Ci-
tations in this document: §3.

[43] Ronald L. Rivest, Adi Shamir, Leonard M. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Communications of the ACM
21 (1978), 120–126. ISSN 0001-0782. URL: https://people.csail.mit.edu/

rivest/Rsapaper.pdf. Citations in this document: §3.
[44] Matthew Robshaw, Jonathan Katz (editors), Advances in cryptology—CRYPTO

2016—36th annual international cryptology conference, Santa Barbara, CA, USA,
August 14–18, 2016, proceedings, part I, Lecture Notes in Computer Science, 9814,
Springer, 2016. ISBN 978-3-662-53017-7. See [7].

[45] Phillip Rogaway (editor), Advances in cryptology—CRYPTO 2011, 31st annual
cryptology conference, Santa Barbara, CA, USA, August 14–18, 2011, proceedings,
Lecture Notes in Computer Science, 6841, Springer, 2011. See [16].

[46] Arnold Schönhage, Volker Strassen, Schnelle Multiplikation großer Zahlen, Com-
puting 7 (1971), 281–292. ISSN 0010-485X. MR 45:1431. URL: http://link.

springer.com/article/10.1007/BF02242355. Citations in this document: §3.
[47] Adi Shamir, RSA for paranoids, CryptoBytes 1 (1995). URL: http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.154.5763&rep=rep1&type=pdf.
Citations in this document: §1, §3.

[48] Peter W. Shor, Algorithms for quantum computation: discrete logarithms and fac-
toring, in [23] (1994), 124–134; see also newer version [49]. MR 1489242. Citations
in this document: §1.

[49] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer (1995); see also older version [48]; see also
newer version [50]. URL: https://arxiv.org/abs/quant-ph/9508027v2.

[50] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, SIAM Journal on Computing 26 (1997),
1484–1509; see also older version [49]. MR 98i:11108.

[51] Victor Shoup, A proposal for an ISO standard for public key encryption (version
2.1) (2001). URL: http://www.shoup.net/papers. Citations in this document:
§3.

[52] Tsuyoshi Takagi, Fast RSA-type cryptosystem modulo pkq, in [32] (1998), 318–
326. URL: http://imi.kyushu-u.ac.jp/~takagi/takagi/publications/cr98.
ps. Citations in this document: §1, §3.

[53] Xiaoyun Wang, Kazue Sako (editors), Advances in cryptology—ASIACRYPT
2012, 18th international conference on the theory and application of cryptology

http://link.springer.com/article/10.1007/BF00202269
http://link.springer.com/article/10.1007/BF00202269
https://archive.org/details/bitsavers_mitlcstrMI_457188
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://people.csail.mit.edu/rivest/Rsapaper.pdf
http://link.springer.com/article/10.1007/BF02242355
http://link.springer.com/article/10.1007/BF02242355
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.5763&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.5763&rep=rep1&type=pdf
https://arxiv.org/abs/quant-ph/9508027v2
http://www.shoup.net/papers
http://imi.kyushu-u.ac.jp/~takagi/takagi/publications/cr98.ps
http://imi.kyushu-u.ac.jp/~takagi/takagi/publications/cr98.ps

18 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

Level Time (s)

1 4417.1
2 4039.3
3 312.9
4 2709.8
5 446.5
6 1003.4
7 647.7
8 998.7

Level Time (s)

9 750.3
10 1035.7
11 918.1
12 1078.5
13 1180.3
14 1291.4
15 1402.2
16 1503.6

Level Time (s)

17 2121.7
18 2188.4
19 2392.1
20 2463.8
21 2485.0
22 2533.5
23 2632.7
24 3078.2

Level Time (s)

25 4482.4
26 5548.5
27 9019.0
28 16453.6
29 32835.6
30 69089.7
31 123100.4

Table A.1. Time per product-tree level in key generation—We record the time
for each product-tree level in a 1-terabyte key generation using lattice0. Level 1 takes
1,953,125,000 4096-bit numbers as input, and produces 976,562,500 8192-bit numbers
as output. Level 31 takes two 500GB numbers and multiplies them to create the final
1TB output.

and information security, Beijing, China, December 2–6, 2012, proceedings, Lec-
ture Notes in Computer Science, 7658, Springer, 2012. ISBN 978-3-642-34960-7.
See [14].

[54] Michael Wiener (editor), Advances in cryptology—CRYPTO ’99, 19th annual
international cryptology conference, Santa Barbara, California, USA, August 15–
19, 1999, proceedings, Lecture Notes in Computer Science, 1666, Springer, 1999.
ISBN 3-540-66347-9. MR 2000h:94003. See [13].

[55] Hugh C. Williams, A p+ 1 method of factoring, Mathematics of Computation 39
(1982), 225–234. MR 83h:10016. Citations in this document: §2.

[56] Christof Zalka, Fast versions of Shor’s quantum factoring algorithm (1998). URL:
https://arxiv.org/abs/quant-ph/9806084. Citations in this document: §2, §4.

[57] Paul Zimmermann, About memory-usage of mpz mul (2016). URL: https://

gmplib.org/list-archives/gmp-discuss/2016-June/006009.html. Citations
in this document: §A.

A Appendix: Implementation barriers and details

Extending GMP’s integer capacity. The GMP library uses hard-coded 32-
bit integers to represent sizes in multiple locations in the library. Without any
modifications, GMP supports 237-bit integers on 64-bit machines [25]. To rep-
resent large values, we extended GMP’s capacity from 32-bit integers to 64-bit
integers by changing the data typing in GMP’s integer structure, mpz. Namely,
we changed mpz size and mpz alloc from int types to int64 t types. To ac-
commodate increased memory usage, we increased the bound for GMP’s memory
allocation for the mpz struct in realloc.c to LLONG MAX. The final modifications
we made were to create binary-format I/O functions for 64-bit mpzs, namely in
mpz inp out.c and mpz out raw.c.

Impact of swapping. We initially evaluated the performance of our product-
tree implementation by generating a “dummy key”, a terabyte product of ran-
dom 4096-bit integers. During this product computation, we counted instructions

https://arxiv.org/abs/quant-ph/9806084
https://gmplib.org/list-archives/gmp-discuss/2016-June/006009.html
https://gmplib.org/list-archives/gmp-discuss/2016-June/006009.html

Post-quantum RSA 19

Name CPU type Physical cores RAM Count

lattice0 3.40GHz Intel Xeon E7-8893 v2 quad 6-core 3TB 1
raminator 2.60GHz Intel Xeon E7-4860 v2 quad 12-core 1TB 1
siv-1-[1-8] 2.50GHz Intel Xeon E5-2680 v3 dual 12-core 512GB 8
lattice[1-6] 2.30GHz Intel Xeon E5-2699 v3 dual 18-core 256GB 6
siv-[2-3]-[1-8] 2.20GHz Intel Xeon E5-2699 v4 dual 22-core 512GB 16
utah[1-4] 2.20GHz Intel Xeon E5-2699 v4 dual 22-core 512GB 4

Table A.2. Heterogeneous compute cluster—The experiments in this paper were
carried out on a heterogeneous cluster.

per CPU cycle (IPCs) with the command perf stat -e instructions,cycles

-a sleep 1 to measure the lost performance caused by swapping. When no
swapping occurred, the machine had about 2 instructions per cycle, but upon
swapping, the instructions per cycles dropped as low as 0.37 instructions per
cycle and held around 0.5 to 1.2 instructions per cycle.

GMP memory consumption. GMP’s memory consumption is another con-
cern. High RAM and swap usage at higher levels in the product tree are at-
tributed to GMP’s FFT implementation. According to GMP’s developers, their
FFT implementation consumes about 8n bytes of temporary memory space for
an n·n product where n is the byte size of the factors [57]. This massive consump-
tion of memory also triggered a known race condition in the Linux kernel [2]. The
bug was found in the huge memory.c code. There are numerous bug reports for
variants of the same bug on various mainline Linux systems throughout the past
six years. Disabling transparent huge pages avoided the transparent hugepage

code in the kernel.

Measurements for 1-terabyte key product tree. In Table A.1, we show
the wall-clock time for each level of computing a 1-terabyte product tree. Levels
far down in the product tree are easily parallelized. We carried out the entire
computation on lattice0 using 48 threads. The computation used a peak of
3.16TB of RAM and 2.22TB of swap memory, and completed in 356,709 seconds,
or approximately 4 days, in wall-clock time.

Heterogeneous cluster description. See Table A.2.

B Credits for multi-prime RSA

The idea of using RSA with more than two primes is most commonly credited
to Collins, Hopkins, Langford, and Sabin, who received patent 5848159 in 1998
for “RSA with several primes”:

The invention, allowing 4 primes each about 150 digits long to obtain
a 600 digit n, instead of two primes about 350 [sic] digits long, results
in a marked improvement in computer performance. For, not only are

20 Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta

primes that are 150 digits in size easier to find and verify than ones on
the order of 350 digits, but by applying techniques the inventors derive
from the Chinese Remainder Theorem (CRT), public key cryptography
calculations for encryption and decryption are completed much faster—
even if performed serially on a single processor system.

However, the same idea had already appeared in the original RSA patent in
1983:

In alternative embodiments, the present invention may use a modulus
n which is a product of three or more primes (not necessarily distinct).
Decoding may be performed modulo each of the prime factors of n and
the results combined using “Chinese remaindering” or any equivalent
method to obtain the result modulo n.

In any event, both of these patents have now expired, so they will not interfere
with the deployment of post-quantum RSA.

	Post-quantum RSA

